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Abstract12

Spaceborne lidar observations have great potential to provide accurate global estimates of13

the aerosol direct radiative effect (DRE) in both clear and cloudy conditions. However, com-14

parisons between observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satel-15

lite (CALIPSO) and multiple years of Atmospheric Radiation Measurement (ARM) pro-16

gram’s ground-based Raman lidars (RL) show that CALIPSO does not detect all radiatively-17

significant aerosol, i.e. aerosol that directly modifies the Earth’s radiation budget. We esti-18

mated that using CALIPSO observations results in an underestimate of the magnitude of the19

global mean aerosol DRE by up to 54%. The ARM RL datasets along with NASA Langley20

airborne high spectral resolution lidar (HSRL) data from multiple field campaigns are used21

to compute the detection sensitivity required to accurately resolve the aerosol DRE. This22

shows that a lidar with a backscatter coefficient detection sensitivity of about 1−2x10−4
km
−1

sr
−1

23

at 532nm would resolve all the aerosol needed to derive the DRE to within 1%.24

1 Introduction25

Assessing and interpreting the Earth’s changing radiative energy budget continues26

to be hampered by large uncertainties in clouds and aerosols [Boucher et al., 2013]. For27

aerosols, the most basic understanding starts with knowledge of how they affect the Earth’s28

radiation balance in the present climate. Many studies [Yu et al., 2006, and references therein]29

have used the aerosol optical depth (AOD) retrieved from passive remote sensors to make30

estimates of the shortwave (SW) aerosol direct radiative effect (DRE), i.e. the radiative per-31

turbation due to aerosols both natural and anthropogenic. These studies focus on the SW32

aerosol DRE since passive remote sensing cannot provide the vertical information nor night-33

time observations needed to determine the longwave (LW) aerosol DRE [Torres et al., 2007;34

Chand et al., 2008; Zarzycki and Bond, 2010]. Accurate estimates of SW aerosol DRE from35

passive remote sensors are often limited to daytime cloud-free ocean since it is under these36

conditions that passive aerosol retrievals perform best [Li et al., 2009; Kokhanovsky et al.,37

2010]. While advances have been made in passive sensor retrieval over cloud [Torres et al.,38

2007; Waquet et al., 2009, 2013; de Graaf et al., 2012; Jethva et al., 2013; Meyer et al.,39

2015] and land [Dubovik et al., 2011; Lyapustin et al., 2011a,b], complete global all-sky40

aerosol DRE estimates, even after the combination of multiple techniques, must rely on41

model information to fill in the inevitable gaps [e.g. Lacagnina et al., 2017].42

The advent of the lidar on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satel-43

lite (CALIPSO) [Winker et al., 2009, 2010] alleviates these aforementioned limitations of44

passive sensors. CALIPSO provides vertically-resolved aerosol properties over all surface45

types during both day and night, and can more accurately separate cloud from aerosol in46

the same profile [Liu et al., 2009]. Recognizing these advantages, recent studies have used47

CALIPSO to provide new all-sky estimates of the global TOA SW aerosol DRE [Oikawa48

et al., 2013; Matus et al., 2015]. Notably, the clear-sky ocean aerosol DRE from these CALIPSO-49

based estimates [Oikawa et al., 2013; Matus et al., 2015] are significantly smaller in magni-50

tude than the passive sensor-based ones [Yu et al., 2006].51

Validating CALIPSO relative to advanced ground-based or airborne lidars that directly52

measure the extinction profile allows for the separation of CALIPSO errors due to assumed53

lidar ratios (the ratio of extinction to backscatter) and those errors from undetected aerosol.54

Unfortunately, these advanced lidars have compiled very few extended datasets that can be55

used for long-term CALIPSO validation, and thus comparisons are often limited to case stud-56

ies [e.g. Pappalardo et al., 2010]. Only recently has more rigorous CALIPSO validation57

been possible by compiling data from multiple flights of the airborne NASA Langley high58

spectral resolution lidar (HSRL) [Hair et al., 2008] and through a re-processing [Thorsen59

et al., 2015; Thorsen and Fu, 2015a] of the continuous-operated DOE Atmospheric Radi-60

ation Measurement (ARM) program’s Raman lidars (RL) [Goldsmith et al., 1998; Ferrare61

et al., 2006; Newsom, 2009]. Studies using these HSRL and Raman lidar datasets have doc-62
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umented that optically-thinner aerosol can go undetected by CALIPSO [Kacenelenbogen63

et al., 2014; Rogers et al., 2014; Thorsen et al., 2015].64

Thorsen and Fu [2015b] (hereafter TF15) assessed CALIPSO’s ability to detect all65

radiatively-significant aerosol, i.e. aerosol that directly modifies the TOA radiation budget,66

using multiple years of data from the ARM RLs. TF15 showed that the aerosol that goes67

undetected by CALIPSO is radiatively-significant and results in an underestimate in the mag-68

nitude of the SW aerosol DRE by 30–50% at the two ARM sites examined. In this study, we69

first examine biases in the new version 4 of the CALIPSO data (section 3) following TF15.70

We then assess how well the biases found over the two ground sites can characterize the bi-71

ases present in the global CALIPSO data set (section 4). The ARM RL data along with data72

from the airborne NASA Langley HSRL are used to compute the detection sensitivity re-73

quired for a lidar to fully-resolve radiatively-significant aerosol (section 5) and we conclude74

by discussing how future space-based lidars might improve our knowledge of aerosol radia-75

tive effects (section 6).76

2 Datasets77

Three lidar datasets are used in this study:78

1. the CALIPSO satellite [Winker et al., 2009, 2010] level 2 version 3 (v3) and version 479

(v4) vertical feature mask (VFM) product and the aerosol layer (ALay) product,80

2. multiple years of ARM RL data acquired at the Tropical Western Pacific (TWP) site81

in Darwin, Australia and the Southern Great Plains (SGP) site in Oklahoma, and sub-82

sequently analyzed using the RL Feature detection and EXtinction retrieval (RL-FEX)83

algorithm [Thorsen et al., 2015; Thorsen and Fu, 2015a], and84

3. the NASA Langley HSRL [Hair et al., 2008] data from multiple campaigns across85

North America.86

Direct comparisons are made between collocated RL-FEX and CALIPSO data. We focus87

on the subset of profiles that are “transparent”, i.e. profiles where the laser beam penetrates88

completely through all cloud and aerosol layers, and “cloud-free” profiles, profiles that are89

both transparent and have no cloud layers detected. Full descriptions of datasets, collocation90

criteria, and the sub-setting of profiles can be found in the Supporting Information (Text S1).91

3 CALIPSO biases over the ARM sites92

Profiles of RL-FEX and CALIPSO aerosol occurrence (number of aerosol / (number of93

aerosol + number of clear) ) in transparent and cloud-free profiles are shown in Fig. 1. Over-94

all, significantly less aerosol is detected by CALIPSO relative to RL-FEX at both the SGP95

and TWP sites. As expected, CALIPSO’s detection is better during the nighttime (dashed96

lines) than daytime (dotted lines) and improved when the comparison is limited to cloud-free97

profiles only (Fig. 1(c)-(d)). However, even in the best-case scenario of cloud-free night-98

time profiles, CALIPSO detects less aerosol than RL-FEX. Aerosol occurrence slightly in-99

creases in CALIPSO v4 (red) over CALIPSO v3 (gray) with the exception of a few heights100

in the daytime TWP profiles. This is likely due to improved calibration in v4 that increases101

the magnitude of the backscatter [Getzewich et al., 2016] allowing for the detection of more102

tenuous layers.103

Using the newer CALIPSO v4 data, we perform a similar analysis to TF15 to assess108

how well CALIPSO detects all radiatively-significant aerosol. Unlike TF15, we do not per-109

form radiative transfer calculations but instead we assess AOD biases. Since AODs are typ-110

ically relatively small, the aerosol DRE depends linearly on the AOD so relative biases in111

the DRE and AOD are expected to be similar. Therefore, fully resolving the AOD is akin to112

detecting all radiatively-significant aerosol. The effect of detection sensitivity on the AOD113
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Figure 1. The aerosol occurrence (number of aerosol / (number of aerosol + number of clear) ) in (a,b)

transparent and (c,d) cloud-free profiles from RL-FEX (blue), version 3 (gray) and version 4 (red) of the

CALIPSO VFM v4 product at the (a,c) TWP and (b,d) SGP sites. Profiles are also shown separately for the

daytime (dotted) and nighttime (dashed) observations.
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is isolated by generating a set of RL-FEX data that has been degraded to CALIPSO’s sensi-114

tivity (Supporting Information, Text S2). This procedure also accounts for the difference in115

wavelength between the RL systems and CALIPSO (355 nm and 532 nm, respectively). Bi-116

ases from aerosol undetected by CALIPSO are assessed by comparing the original RL-FEX117

data to the simulated CALIPSO-like data.118

AOD biases due to aerosol undetected by CALIPSO are shown in Fig. 2. Overall AOD119

is substantially underestimated by CALIPSO, thus demonstrating that CALIPSO’s detec-120

tion sensitivity is not sufficient for detecting all radiatively-significant aerosol that occurs121

over the SGP and TWP sites. The AOD is underestimated by 27% (49%) at TWP (SGP) in122

transparent profiles. The use of v4 CALIPSO data reduces the magnitude of the biases in123

Fig. 2 by an average of 3% over using v3 CALIPSO data (not shown). Also shown is the124

portion of the AOD bias due to all aerosol going completely undetected in the profile, i.e.125

CALIPSO AOD = 0 (hatched bars in Fig. 2). Comparing this to the total biases shows that126

most of CALIPSO’s bias is due to the partial detection of aerosols in a profile rather than all127

aerosol going completely undetected.128

4 Global implications of CALIPSO biases133

Although we can only directly evaluate CALIPSO’s sensitivity using the RL-FEX data134

over the two ARM sites, understanding how these two comparisons represent global biases is135
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Figure 2. CALIPSO aerosol optical depth (AOD) biases due to undetected aerosol for (a) transparent and

(b) cloud-free profiles over the ARM TWP and SGP sites shown separate for both day and night (purple), day

only (red), and night only (blue). The hatched portion of each bar denotes the portion of the AOD bias caused

by all aerosol going complete undetected by CALIPSO in a profile (i.e. CALIPSO AOD = 0).

129

130

131

132

highly desirable. Their global-scale representativeness depends on the similarity of the verti-136

cal profiles of aerosol extinction and backscatter, overlying transparent cloud optical depths,137

and the magnitude of the solar background. Determining the combined similarity from all138

these components is not straightforward. Instead, the frequency of zero AOD retrieved by139

CALIPSO, i.e. the frequency with which CALIPSO does not detect any aerosol in a profile,140

is used as an indicator of the total AOD bias. Doing this is supported by the high correlation141

(r = 0.96) of the total AOD bias (bars in Fig. 2) and the portion of the AOD bias caused142

by zero AOD shown (hatched segments of bars in Fig. 2). This correlation is to be expected143

if the undetected aerosol is predominately to due random noise: larger (smaller) amounts144

of noise should increase (decrease) both the total bias along with the bias that results from145

aerosol in a profile going completely undetected. The presumption of random noise is also146

supported by TF15 who showed that the distributions of undetected aerosol extinction coeffi-147

cients are consistent with that expected from random noise.148

It is expected that the true AOD should always be greater than zero since some amount149

of aerosols are always present. This is the case in the RL-FEX data where nearly all profiles150

(99.99%) have an AOD greater than zero. For the CALIPSO data over the two ARM sites the151

frequency of zero AOD is larger ranging from 0% in nighttime cloud-free profiles over TWP152

to 43% in daytime transparent profiles over SGP. Figure 3 shows the frequency of zero AOD153

in CALIPSO data is also significant over most of the globe. On average, 29% (17%) of trans-154

parent (cloud-free) CALIPSO profiles have zero AOD. Larger frequencies of zero CALIPSO155

AOD are found where detection is expected to be more difficult: during daytime, in the pres-156

ence of clouds, over areas where aerosol is more vertically diffuse (land), and over brighter157

surfaces (land, and polar regions) where the solar background noise is larger. CALIPSO per-158

forms best in nighttime cloud-free profiles over ocean where the average frequency of zero159

AOD is 3%.160

CALIPSO’s frequency of zero AOD over the ARM sites (bracketed values in Fig. 3)167

typically encompasses the corresponding global mean values in Fig. 3. With the exception168

of the transparent nighttime comparison, the global mean frequency of zero AOD is close to169

the mean value of the two ARM sites. Therefore, the average of AOD biases at the two ARM170
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Figure 3. The frequency of no aerosol optical depth (i.e. AOD = 0) in the CALIPSO 5km ALay v4 product

for (a,c,e) transparent and (b,d,f) cloud-free profiles during (a,b) both day and night, (c,d) day only, and (e,f)

night only. The global mean frequency of AOD = 0 is given above each panel along with the range of the

frequencies for the subset of profiles over the ARM TWP and SGP sites in brackets [TWP, SGP]. Average

frequencies are shown on a 2◦ by 5◦ latitude by longitude grid from the period of June 2006 - November

2015.
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sites in Fig. 2 can be used as a rough estimate of CALIPSO’s global mean AOD bias. During171

the daytime, CALIPSO’s global mean AOD bias is about -54% (-47%) in transparent (cloud-172

free) profiles. For nighttime cloud-free profiles, the bias is -22%. For transparent nighttime173

profiles the global mean frequency of zero AOD is more similar to that over the SGP site, but174

larger by 5%. Therefore, the AOD bias computed at the SGP site of -38% likely represents a175

lower bound on the CALIPSO global mean bias in nighttime transparent profiles.176

5 Effect of lidar detection sensitivity on AOD bias177

CALIPSO’s limited sensitivity raises the question: what sensitivity does a lidar need178

to detect all radiatively-significant aerosols? To explore this, the RL-FEX data and the com-179

bination of data from 25 field campaigns performed by the NASA Langley airborne HSRL180

are used to compute the AOD bias that results from imposing various minimum detectable181

backscatter coefficient thresholds. The RL-FEX data is used to compute the true mean AOD182

at each ARM site. Relative to this true mean, the AOD bias from ignoring aerosols with183

backscatter coefficients below a certain threshold is computed. This is repeated for 60 dif-184

ferent thresholds. The same processes is also performed with the NASA HSRL data. The185

usefulness of this exercise is made possible by our confidence in the ability of the ARM RL186
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and NASA HSRL to detect all aerosol that contribute significantly to the AOD (Supporting187

Information, Text S3).188

The AOD bias as a function of the aerosol backscatter threshold is shown in Fig. 4.189

These AOD bias curves show a somewhat consistent dependence on the backscatter thresh-190

old among the three datasets. Figure 4 shows that if one, for example, wanted to resolve the191

AOD to within 5%, a lidar would need to be able to detect a minimum backscatter coefficient192

5.6x10−4
km
−1

sr
−1 at 355 nm (or equivalently 3.5x10−4

km
−1

sr
−1 532nm). Alternatively, a193

detection sensitivity of 1 − 2x10−4
km
−1

sr
−1 at 532nm would limit the AOD bias to within194

about -1% and hence be sufficient to resolve all aerosol needed to derive the DRE accurately.195
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Figure 4. The aerosol optical depth (AOD) bias as a function of imposing a minimum detectable aerosol

backscatter (β) threshold on the RL-FEX TWP (solid black), RL-FEX SGP (dashed black), and NASA Lan-

gley HSRL (dotted black) datasets. The NASA Langley HSRL is the compilation of 25 field campaigns (Fig.

S1). The mean CALIPSO detection thresholds inferred from the comparison to the RL-FEX TWP and SGP

data (section 3) are given as vertical lines for (red) day and (blue) night. The range of CALIPSO theoret-

ical backscatter detection limits from the CALIPSO Algorithm and Theoretical Basis Document [ATBD,

Vaughan et al., 2005] are depicted as a double sided gray arrow. The bottom (top) x axis gives the backscatter

at 355nm (532nm). These 355nm/532nm axes are offset using a backscatter color ratio of 1.60 (Supporting

Information, Text S4)
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198

199

200
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204

Figure 4 also shows CALIPSO’s average detection thresholds in cloud-free profiles205

inferred from the AOD bias analysis in section 4 (red and blue vertical lines). The theoret-206

ical detection limits of CALIPSO in cloud-free profiles from the CALIPSO Algorithm and207

Theoretical Basis Document [ATBD, Vaughan et al., 2005] are depicted as a double sided208

gray arrow. This arrow spans the detection sensitivity for a nighttime scene with 80 km of209

horizontal averaging to a daytime scene with 5 km of averaging. Comparing this range to210

the thresholds derived in this work and in Rogers et al. [2014] along with the AOD biases211

reported by Kim et al. [2017] (Supporting Information, Text S5) shows that CALIPSO per-212

formance is generally consistent with its expected sensitivity.213
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6 Conclusions and the future of spaceborne lidar observations214

Comparisons between CALIPSO and the ARM Raman lidar (RL) data over the TWP215

Darwin, Australia site and the SGP site in Oklahoma reveal that CALIPSO does not detect216

all radiatively-significant aerosol, i.e. aerosol that directly modifies the radiation budget. By217

extrapolating these comparisons, we show that this undetected aerosol causes CALIPSO218

to underestimate the global mean AOD (or equivalently the magnitude of the global mean219

aerosol direct radiative effect (DRE) ) by approximately 54% (47%) in transparent (cloud-220

free) daytime profiles. During the nighttime, the AOD bias is about -22% in cloud-free pro-221

files and is estimated to be at least -38% in transparent profiles. The ARM RL data along222

with data from multiple field campaigns of the airborne NASA Langley high spectral res-223

olution lidar (HSRL) were used to compute the detection sensitivity required for a lidar to224

resolve all radiatively-significant aerosol. This analysis shows that a lidar with a backscatter225

coefficient detection sensitivity of about 1 − 2x10−4
km
−1

sr
−1 at 532nm would limit the AOD226

bias to within about -1% and hence be sufficient to resolve all aerosol needed to derive the227

DRE accurately.228

Some improvements on the CALIPSO AOD biases presented here could be realized229

through the application of alternative retrieval methods [Hu, 2007; Liu et al., 2015; Josset230

et al., 2008; Venkata and Reagan, 2016]. The common feature of these methods is the use231

of the scattering properties of a known target, either opaque water clouds [Hu, 2007; Liu232

et al., 2015] or the ocean surface [Josset et al., 2008; Venkata and Reagan, 2016], to provide233

a column-constraint for the retrieval of AOD. While each method potentially provides more234

accurate AOD, they can only be applied in specific situations: over opaque water clouds [Hu,235

2007; Liu et al., 2015] or in clear-sky profiles over ocean [Josset et al., 2008; Venkata and236

Reagan, 2016].237

Recently, additional spaceborne lidar observations have been available from the Cloud-238

Aerosol Transport System [CATS, McGill et al., 2015; Yorks et al., 2016] lidar that operates239

on the International Space Station. However, the frequency of zero AOD in the CATS ver-240

sion 1.05 level 2 data is on average ∼90% larger than CALIPSO (Fig. S3), an indication of241

an even poorer detection sensitivity than CALIPSO. EarthCARE, a soon to be launched joint242

ESA-JAXA satellite, will include a single-wavelength polarization-sensitive HSRL ATLID.243

ATLID is designed for improved daytime performance over CALIPSO, but its nighttime244

performance is expected to be comparable to CALIPSO [Illingworth et al., 2015]. Since245

CALIPSO still underestimates the nighttime global mean AOD by 22% in cloud-free pro-246

files and by at least 38% in transparent profiles, it is likely significant biases will remain in247

ATLID data. However, some improvement on ATLID’s nominal detection limits may be pos-248

sible from the advantages in processing a HSRL signal as described below.249

While a spaceborne lidar has great potential to provide accurate global estimates of250

both shortwave and longwave aerosol DRE in all-sky conditions, the sensitivity of the cur-251

rent CALIPSO and CATS lidars and the expected sensitivity of ATLID on EarthCARE in-252

dicates that calculations of the aerosol DRE are, and will continue to be, significantly bi-253

ased. The key requirement to eliminate these biases is a more sensitive lidar capable of fully-254

resolving all radiatively-significant aerosol. This requirement, among others, is being taken255

under consideration for the MESCAL (Monitoring the Evolving State of Clouds and Aerosol256

Layers) mission concept— a joint mission concept study between CNES and NASA Lang-257

ley of a spaceborne HSRL. Rather than addressing this issue with a more sensitive version258

of an elastic backscatter lidar like CALIPSO, directly measured backscatter and extinction259

coefficients from an HSRL allows for larger amount of averaging (which reduces noise and260

improves sensitivity) to be safely performed. With an elastic backscatter lidar like CALIPSO,261

averaging attenuated backscatter is complicated by needing to correct for the non-linear at-262

tenuation without direct knowledge of the extinction profile. Therefore, larger amounts of263

averaging are increasingly error prone as signals with dissimilar amounts of attenuation are264

averaged. An HSRL also allows for accurate “full-column” retrievals that integrate the entire265

profile to obtain the column optical depth. This integration serves to greatly decrease noise266

–8–



Confidential manuscript submitted to Geophysical Research Letters

allowing for a very sensitive measurement of the AOD. AOD measured in this way would267

provide a built-in reference AOD for checking the accuracy of HSRL extinction profiles and268

could be added as an additional constraint in a detection algorithm.269

Beyond extinction profiles, additional quantities are required for a radiative flux calcu-270

lation: profiles of the aerosol single-scattering albedo (SSA), asymmetry parameter (g) and271

the wavelength dependence of the extinction coefficients. Currently, operational retrievals of272

these properties are not made globally, forcing calculations of aerosol DRE to make assump-273

tions based on a limited knowledge of the aerosol type [e.g. Oikawa et al., 2013; Matus et al.,274

2015]. One of the mission concepts being developed for MESCAL is a instrument capable275

of measuring backscatter, extinction, and depolarization at multiple wavelengths. Measure-276

ments from such an instrument, when combined with additional column constraints provided277

by a multiwavelength multiangle polarimeter, has the potential to provide vertically-resolved278

retrievals of aerosol microphysical properties including SSA and g [Müller et al., 2014;279

Burton et al., 2016]. Observing these quantities globally would allow for a detailed look at280

aerosol DRE beyond the usual focus on the SW TOA effect: i.e. the radiative effects at the281

surface, within the atmosphere, and in the LW where estimates have been limited [Bharmal282

et al., 2009; Huang et al., 2009]. Current satellite observations also do not provide all the283

quantities needed to compute the aerosol direct radiative forcing (DRF), i.e. the radiative ef-284

fect of just anthropogenic aerosols. A multiwavelength HSRL would also allow for a more285

refined aerosol classification to be made [Burton et al., 2012; Burton et al., 2014] enabling a286

better estimate of the anthropogenic aerosol radiative effect. These observations could bet-287

ter constrain the aerosol DRF whose uncertainty is large enough that its sign is unknown288

[Boucher et al., 2013] which undermines our ability to model aerosol effects on climate.289
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S1 Dataset descriptions and collocation

The ARM Raman lidar (RL) measures elastic backscattered light at 355 nm, Raman

backscattered light from nitrogen and water vapor molecules, and has rotational Raman tem-

perature channels [Goldsmith et al., 1998; Ferrare et al., 2006; Newsom, 2009]. We use the

Feature detection and EXtinction retrieval (FEX) algorithm [Thorsen et al., 2015; Thorsen

and Fu, 2015a] data (RL-FEX) that provides retrievals of cloud and aerosols from this sys-

tem at a 2 min time resolution and 30 m vertical resolution. RL-FEX data from December

2010 – December 2014 at the ARM Tropical Western Pacific (TWP) Darwin, Australia site

(12.43◦ S, 130.89◦ E) and from August 2008 – August 2013 at the Southern Great Plains

(SGP) site in Oklahoma (36.61◦ N, 97.49◦ W) are used in this study.

The CALIPSO satellite [Winker et al., 2009, 2010] provides near-global observations

in a sun-synchronous orbit at approximately 0130 and 1330 (local time). The main instru-

ment on board is CALIOP, a 2 wavelength (532 nm and 1064 nm) polarization-sensitive li-

dar [Hunt et al., 2009]. We use the CALIPSO level 2 version 3 (v3) and version 4 (v4) verti-

cal feature mask (VFM) and aerosol layer (ALay) product.

The RL-FEX and CALIPSO data are collocated by taking the set of CALIPSO pro-

files that fall within 200 km of the ARM sites and the RL profiles that fall within ±2 hours of

Corresponding author: Tyler J. Thorsen, tyler.thorsen@nasa.gov
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CALIPSO overpass times. Since aerosol properties are typically homogeneous at scales of

less than 10 h and 200 km [Anderson et al., 2003] we expect the lack of direct collocation to

minimally affect our comparisons. This is confirmed by examining CALIPSO (RL-FEX)

AOD and aerosol occurrence profiles. Both show no significant dependence on distance

(time) within the spatial (temporal) collocation criteria (not shown).

Our analysis is focused on the subset of profiles that are transparent, i.e. profiles where

the laser beam penetrates completely through all cloud and aerosol layers. Only in trans-

parent profiles can we expect all aerosol in the column to be detected. For CALIPSO data

products, transparent profiles are defined as those with the presence of a signal return from

the surface. In the RL-FEX product, transparent profiles are defined as those where the elas-

tic channel signal-to-noise ratio (SNR) is greater than 1 at 18.5 km. Addition comparisons

are also made in cloud-free profiles, i.e. profiles that are both transparent and have no cloud

layers detected.

Data from the airborne NASA Langley HSRL [Hair et al., 2008] over 25 field cam-

paigns across North America (Fig. S1 and Table S1) are also used in the this study. The air-

borne NASA HSRL uses the HSRL technique [Grund and Eloranta, 1991] to measure ex-

tinction and backscatter coefficients independently at 532nm along with the standard backscat-

ter technique at 1064nm. Profiles of aerosol extinction and backscatter are averaged to 1 min

(∼6 km along track of the aircraft) and 30 m vertically. A second iteration of this instrument,

HSRL-2, added HSRL capacity at 355nm and began flying in field missions in 2012.

S2 Degrading the RL-FEX data to a CALIPSO-like detection sensitivity

A direct comparison of the RL-FEX AOD and CALIPSO AOD is complicated by a

difference in wavelength between the two instruments (355nm compared to 532nm) and the

additional uncertainty from CALIPSO’s selection of the lidar ratio. Therefore, the method-

ology of Thorsen and Fu [2015b] is used to compute the AOD difference due solely to the

difference in detection sensitivity between the two instruments. The Thorsen and Fu [2015b]

method produces a RL-FEX dataset that is degraded to the sensitivity of CALIPSO. In brief,

the difference in the aerosol occurrence profiles in each collocated overpass are used to com-

pute the probability that CALIPSO does not detect aerosol. These per-pass probability pro-

files are then applied to the RL-FEX data using a Monte Carlo method to produce many

(1000) realizations of CALIPSO-like aerosol profiles. Biases from aerosol undetected by
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CALIPSO can then be assessed by comparing the original RL-FEX data to simulated CALIPSO-

like data and statistical significance is assess from the individual Monte Carlo samples. The

methodology of Thorsen and Fu [2015b] is also extended to compute the portion of the AOD

bias due to all aerosol in the profile going completely undetected by CALIPSO (i.e. AOD

= 0). The probability that all aerosol goes completely undetected is computed for each col-

lected overpass by noting the fraction of CALIPSO profiles with zero AOD. This probably is

then applied to the RL-FEX data in the overpass to generate 1000 Monte Carlo sets of RL-

FEX data with the same fraction of profiles with no AOD.

S3 Detection sensitivity of ARM RL and NASA HSRL datasets

The usefulness of the threshold analysis in section 5 is predicated on the ability of the

ARM RL and NASA HSRL to detect all aerosol that contribute significantly to the AOD.

Comparisons of data from both these instruments to the Aerosol Robotic Network project

(AERONET) [Holben et al., 1998] suggest that this is the case with AOD typically differing

by less than a few percent [Thorsen and Fu, 2015a; Rogers et al., 2009]. Figure S2 also sup-

ports that these datasets capture all the radiatively significant aerosol. The aerosol backscat-

ter cumulative distribution functions (CDF, blue lines) are shifted towards smaller backscat-

ter values relative to the AOD biases. This shows that there is a portion of aerosols detected

in these lidar datasets that only contribute minimally to the total AOD (and hence are radiatively-

insignificant). For example, 10% of the weakest-scattering aerosols only contribute about 1%

of the total AOD in all three datasets.

S4 Backscatter color ratio

The AOD bias as a function of the aerosol backscatter detection threshold are de-

rived from both the ARM RL measurements at 355nm and the NASA airborne HSRL mea-

surements at 532nm (section 5). To facilitate comparisons between the two, the aerosol

backscatter color ratio, i.e. the ratio of the backscatter coefficient at 355nm to 532nm, is

computed from data taken during the Combined HSRL And Raman lidar Measurement

Study (CHARMS). CHARMS occurred from July through September 2015 at the ARM SGP

site during which the University of Wisconsin bagoHSRL operated along side the ARM RL.

The UW bagoHSRL measures aerosol backscatter profiles at both 532 and 1064 nm, and

aerosol extinction profiles at 532 nm using the HSRL technique [Grund and Eloranta, 1991].

From combination of ARM RL and UW bagoHSRL data the mean 355nm/532nm aerosol
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backscatter color ratio is found to be 1.60 (with a standard deviation of 0.60). This ratio of

1.60 is used to convert 355nm (532nm) values derived from the ARM RL (NASA HSRL)

data to 532nm (355nm) and to offset the bottom and top x axes in Figs. 4, S2.

S5 Comparisons to other estimates of CALIPSO’s detection sensitivity

Kim et al. [2017] estimated CALIPSO’s AOD bias due to undetected aerosol in cloud-

free profiles globally using “full-column” retrievals. Instead of obtaining AOD by integrating

only the aerosol layers identified by CALIPSO’s detection algorithm, a full-column retrieval

integrates the entire backscatter profile. Using this technique, Kim et al. [2017] show that

CALIPSO underestimates the global mean AOD in cloud-free profiles by 21% at night and

32% during the day. The Kim et al. [2017] nighttime bias estimate is very similar that made

in this study (-22%) while their daytime values is smaller than our estimate of -47%. This

daytime discrepancy could be due to an under sampling on our part of the solar background

conditions that CALIPSO experiences globally, or possibly due to uncertainties in the full-

column retrievals. As Kim et al. [2017] show, full-column retrievals are very sensitive to

both calibration, and, since CALIPSO measures attenuated backscatter, the accuracy of the

lidar ratio used for the undetected aerosol.

Rogers et al. [2014] determined median CALIPSO detection threshold in cloud-free

situations through collocated comparisons to NASA airborne HSRL datasets. Good agree-

ment exists between this study and the Rogers et al. [2014] estimate of CALIPSO’s daytime

detection thresholds: Rogers et al. [2014] derive a daytime threshold of 1.7x10−3
km
−1

sr
−1

compared to our estimate of 1.5x10−3
km
−1

sr
−1 (at 532nm). However, the nighttime thresh-

old inferred by this study (7.7x10−4
km
−1

sr
−1 at 532nm) is larger than Rogers et al. [2014]

(3.1x10−4
km
−1

sr
−1 at 532nm). This discrepancy at nighttime may be partially due to the

sampling by Rogers et al. [2014] who analyzed more than two times less nighttime data than

daytime. This is also the opposite agreement found between our study and Kim et al. [2017]

whose estimate of CALIPSO AOD bias at night agrees well while our daytime estimate is

larger.

Figures S1–S3
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Figure S1. Ground-tracks of the NASA Langley airborne HSRL campaigns used in this study.
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Figure S2. The aerosol optical depth (AOD) bias as a function of imposing a minimum detectable aerosol

backscatter (β) threshold on the RL-FEX TWP (solid black), RL-FEX SGP (dashed black), and NASA Lan-

gley HSRL (dotted black) datasets. The NASA Langley HSRL is the compilation of 25 field campaigns (Fig.

S1). Also shown is the cumulative distribution functions (blue) of the aerosol backscatter from each dataset.

The bottom (top) x axis in give the backscatter at 355nm (532nm). These 355nm/532nm axes are offset using

a backscatter color ratio of 1.60 (Text S4).
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Figure S3. The frequency of no aerosol optical depth (i.e. AOD = 0) in the CATS 5km Lay M7.2 v1.05

product for (a,c,e) transparent and (b,d,f) cloud-free profiles during (a,b) both day and night, (c,d) day only,

and (e,f) night only. The global mean frequency of AOD = 0 is given above each panel. Average frequencies

are shown on a 2◦ by 5◦ latitude by longitude grid from the period of March 2015 - February 2017.
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Table S1. List of NASA Langley airborne HSRL campaigns used in this study.

Field Mission Dates Location

MILAGRO March 2006 Mexico City

CALIPSO Validation (CC_VEX) May – August 2006 Southeastern US

GOMACCS September 2006 Houston

San Joaquin Valley (SJV) February 2007 California

CHAPS June 2007 Oklahoma

CALIPSO Validation (CALIPSO_VAL_2007) January 2007, August 2007 Eastern US

Caribbean 2008 January – February 2008 Caribbean

ARCTAS 1 April 2008 Alaska

ARCTAS 2 June – July 2008 Northwest Canada

Birmingham September – October 2008 Alabama

CALIPSO Validation (CALIPSO_VAL_2009) January 2009, April 2009 Eastern US

RACORO June 2009 Oklahoma

CalNEX May 2010 Los Angeles

CARES June 2010 Sacramento

Caribbean 2010 August 2010 Caribbean

DISCOVER-AQ 2011 July 2011 DC-Baltimore

EPA_HR August 2011 Southeastern Virginia

DEVOTE October 2011 Southeastern US

CALIPSO Validation (CALIPSO_VAL_2012) March 2012 Eastern US

TCAPa July 2012 Cape Cod

DISCOVER-AQ Californiaa January – February 2013 Central California

DISCOVER-AQ Houstona September 2013 Houston

CALIPSO Validation (CALIPSO_VAL_Bermuda) June 2014 Eastern US, Bermuda

SABOR July – August 2014 Atlantic Ocean

DISCOVER-AQ 2014a July – August 2014 Denver

aHSRL-2 instrument
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